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Recap



Notation

Convention

Ideal means normal uniform ideal on ω1 in this talk.

• If I is an ideal then PI is the associated forcing. It is

Ppω1q{ „I ´trHs„Iu

with the order induced by inclusion. Here, A „I B iff A△B P I.
• If G is PI-generic over V then UG “ tA | rAs„I P Gu is a

V -ultrafilter which induces the generic ultrapower

jG : V Ñ UltpV ,UG q.
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Main Result

Definition

An ideal I is ω1-dense if PI has a dense subsets of size ω1.

That is there is xSi | i ă ω1y a sequence of subsets of ω1 so that for any

A P I` there is i ă ω1 with SizA P I.

Theorem (L.)

If there is an inaccessible κ which is a limit of ăκ-supercompact

cardinals then there is a stationary set preserving forcing P with

V P |ù “NSω1 is ω1-dense”.
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The Strategy

Motivated by Asperó-Schindler, MM``
ñ p˚q, there should be some

forcing axiom FA which solves

MM``

p˚q
“

FA

Qmax-p˚q
.

So FA implies “NSω1 is ω1-dense”. Force FA as follows:

• Iterate small nice-ish forcings up to a supercompact κ via a

RCS-iteration P “ xPα, 9Qβ | α ď γ, β ă γy.

• Invoke an iteration theorem to argue that ω1 (and suitable additional

structure) is preserved along the iteration.

• Employ Baumgartner’s argument to get the forcing axiom.

“NSω1 is ω1-dense” in V P is witnessed by a sequence S⃗ “ xSi | i ă ω1y

of stationary sets. P is κ-cc, so S⃗ P V Pα for some α ă κ.

• Most likely, NSω1 is not ω1-dense in V Pα .

• But then Pα,κ must kill stationary sets of V Pα . That’s fine!

• Pα,κ preserves the Π1-properties of S⃗ that hold in V P Today!.
3



♢pBq and ♢`pBq



More generally ♢pBq and ♢`pBq

Definition

Let B Ď ω1 be a forcing. ♢pBq holds if there is an embedding

π : BÑ Ppω1qzNSω1 so that @p P B there are stationarily many

countable X ă Hω2 with

p P tq P BX X | ω1 X X P πpqqu is a filter generic over X .

We call such X π-slim.

The stronger ♢`pBq holds if there is π witnessing ♢pBq so that every

X ă Hθ with f ,B P X is π-slim.

♢`pBq is just a complete embedding π : BÑ Ppω1qzNSω1 .

Lemma (Essentially Woodin)

π : BÑ Ppω1qzNSω1 witnesses ♢pBq iff r¨sNSω1
˝ π : BÑ pPNSω1

qW is a

complete embedding in some outer model W .
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The Forcing Axiom QM

Definition

QM is the axiom: Dπ witnessing ♢pωăω
1 q so that

FAω1ptP | V P |ù “π witnesses ♢pωăω
1 q”uq

holds.

QM implies...

• there is a Suslin tree,

• “almost disjoint coding” fails,

• the Cichon diagram is

l l ■ ■

l ■

l l ■ ■

• SRP^␣MRP.
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QM is what we are looking for!

Lemma
QM implies NSω1 is ω1-dense!

Proof Sketch.

• Let π witness ♢pωăω
1 q. Want to show that π is a dense embedding.

• If not, let S P NS`
ω1

with no set in ranpπq below S .

• Can show that CSpω1 ´ Sq is π-preserving.

• But by QM applied to CSpω1 ´ Sq, Hω2 ăΣ1 pHω2q
VCSpω1´Sq

,

contradiction.

The real challenge is to force QM.
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Parametrized Properness

Definition

Suppose π witnesses ♢pBq. A forcing P is π-proper if: Whenever

• X ă Hθ countable and π-slim, P P X

• p P PX X

Then there is pX ,P, πq-generic q ď p, i.e. forces

X “ X rG s X V ^ X rG s is π-slim.

Analogously, define π-semiproperness.

Definition

Suppose π witnesses ♢pBq. A set S Ď ω1 is π-stationary if for large

enough regular θ and all clubs C Ď rHθs
ω there is some π-slim X P C,

X ă Hθ with δX P S .
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Parametrized Properness

Classical ♢-Forcing

complete(« σ-closed)

proper

semiproper

stationary set preserving

ω1-preserving

π-complete

π-proper

π-semiproper

π-stationary set preserving

π-preserving

c.c.c. π-c.c.c.
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Parametrized Properness

Some examples...

B “ ... t1u T a Suslin tree

π-proper is... proper proper + T -preserving

π-semiproper is... semiproper semiproper + T -preserving

B “ ... Cohen forcing

π-proper is... “proper for a weakly Luzin sequence”

π-semiproper is... “semiproper for a weakly Luzin sequence”

We really only care about B “ Colpω, ω1q.
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Iteration Theorems

Suppose π witnesses ♢pBq.

Theorem

Countable support iterations of π-proper forcings are π-proper

Theorem

RCS iterations of π-semiproper forcings are π-semiproper.

Corollary (Shelah)

Proper (semiproper) forcings are closed under countable (RCS) support

iterations.

Corollary (Essentially Miyamoto)

Suppose T is a Suslin tree. Proper (semiproper) + T-preserving

forcings are closed under countable (RCS) support iterations.
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The Point of π-Semiproperness

We only want to iterate π-semiproper forcings here for π a witness of

♢pωăω
1 q.

Corollary

If there is a supercompact cardinal then there is a π-semiproper (and

hence π-preserving) poset forcing SRP.

Corollary

If there is a Woodin cardinal then there is a π-semiproper (and hence

π-preserving) poset forcing “NSω1 is saturated”.
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Forcing QM

To force QM we need to

• force a witness π of ♢pωăω
1 q (easy)

• and then iterate arbitrary π-preserving forcings and preserve π

(hard).

• Iterating π-semiproper forcings gives the forcing axiom for all

π-stationary set preserving forcings, but that is not enough!

The iteration theorem from Part II generalizes.

Theorem

Suppose µ witnesses ♢pBq. Let xPα, 9Qβ | α ď γ, β ă γy be a

RCS-iteration of µ-preserving forcings and assume that for all α ă γ:

• ,Pα`1 SRP

• ,Pα
“ 9Qα preserves µ-stationary sets from

Ť

βăα V r 9Gβs”

Then P preserves µ.
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Q-Iterations

We need to get around the restriction of preserving old stationary sets.

Suppose π witnesses ♢pωăω
1 q.

Definition

A Q-iteration is a RCS iteration P “ xPα, 9Qβ | α ď γ, β ă γy of

π-preserving forcings so that for all α ă γ

• ,Pα`2 SRP

• ,Pα`1 “ 9Qα`1 makes π dense for sets in V r 9Gα`1s”.

Corollary (Work-Life-Balance Theorem)

Q-iteration preserve π.

This means we can force QM from large cardinals provided we find the
9Qα`1 which make “π dense for ground model sets” (“sealing forcings for

ω1-density”).
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The New Sealing Forcing



MM``
ñ p˚q

Assuming Hω2 is a “big Pmax-condition”, Asperó-Schindler construct a

forcing P so that in V P the following picture exists:

D˚

q0 qω1 “ pN
˚, I˚, b˚q

p0 pωN
1

pω1

ppHω2q
V , pNSω1q

V ,AqPmax
P σ0,ω1

P Pµ0,ωN
1

µωN
1 ,ω1

“

P

• µ0,ωN
1
witnesses q0 ăVmax p0 and µωN

1 ,ω1
“ σ0,ω1pµ0,ωN

1
q.

• The top iteration q0 Ñ qω1 is correct in V P, i.e.

I˚ “ pNSω1q
V P
X N˚.
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Modifications

We want to replace Pmax by Qmax. Immediate problem: Then we have

to assume that pHω2 ,NSω1q is (part of) a big Qmax-condition. So NSω1

must already be ω1-dense!

Definition
Q´

max-conditions are of the form pM, I , πq with:

• pM, I q is generically iterable.

• M |ù“π witnesses ♢`
I pω

ăω
1 q”

q “ pN, J, τq ăQ´
max

pM, I , πq “ p iff in N there is a generic iteration

(map) j : p Ñ p˚ “ pM˚, I˚, π˚q such that:

• π˚ “ τ

• τ is dense for sets in M˚, i.e. if S P Ppω1q
M˚

then

• either S P J

• or Dp P Colpω, ωN
1 q τppq Ď S mod J.

Qmax embeds densly into Q´
max (assuming ADLpRq). 15



Does it work now?

We can force pHω2 ,NSω1 , πq to be a “big Q´
max-condition” using

π-semiproper forcing. Following Asperó-Schindler, we get:

q0 qω1 “ pN
˚, I˚, τ˚q

p0 pωN
1

pω1

ppHω2q
V , pNSω1q

V , πqQ´
max

σ0,ω1

P Pµ0,ωN
1

µωN
1 ,ω1

“

P

• µ0,ωN
1
witnesses q0 ăVmax

p0 and µωN
1 ,ω1

“ σ0,ω1pµ0,ωN
1
q.

• The top iteration q0 Ñ qω1 is correct in V P, i.e.

I˚ “ pNSω1q
V P
X N˚.

So P makes π dense for sets in V , great! But this it preserve π? Unclear!!
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♢-Iterations

Definition

A generic iteration xpMα, Iαq, µα,β | α ď β ď ω1y is a ♢-iteration if:

For any sequence xDi | i ă ω1y of dense subsets of pPpω1q
Mω1 {Iω1q

`

and any S P I`
ω1
XMω1 have

tα P S | @i ă α Uα X µ´1
α,ω1

rDi s ‰ Hu P NS`
ω1

where Uα is the generic ultrafilter applied to Mα.

All ♢-iterations are correct in the sense that if pM˚, I˚q is the final model

of a ♢-iteration then I˚ “ NSω1 XM˚. But more structure is preserved

now! E.g. if T P M˚ is a Suslin tree in M˚ then T is really Suslin.
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Final Modifications

Even better:

Lemma

Suppose pM˚, I˚q is the final model of a ♢-iteration. If

pM˚; P, I˚q |ù “π witnesses ♢`

I˚pBq

then π witnesses ♢pBq in V .

Theorem (L.)

Can modify Asperó-Schindler’s P to P♢ so that in V P♦ the same

picture as before exists and q0 Ñ qω1 is a ♢-iteration in V P♦ .

This is the final piece! We can get our sealing forcings from Woodin

cardinals!
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Results

Corollary

QM implies Qmax-p˚q.

Theorem

If there is a supercompact limit of supercompact cardinals then QM

holds in a stationary set preserving forcing extension.

Theorem

If there is an inaccessible κ which is a limit of ăκ-supercompact

cardinals then there is a stationary set preserving P with

V P |ù “NSω1 is ω1-dense”.
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The Mystery



The Mystery

How much can the large cardinal assumption of the main theorem be

reduced? We used

• an inaccessible on the top to “catch our tail”,

• Woodin cardinals for the “new sealing forcing” and

• (partial) supercompact to satisfy the greedy iteration theorem.

If we could do without SRP, we could plausibly lower the assumption to

an inaccessible limit of Woodin cardinals!

Theorem (Woodin)

The large cardinal assumption of the main theorem cannot be reduced

to an inaccessible limit of Woodin cardinals. In fact, consistently there

is a model with an inaccessible limit of Woodin cardinals but no

ω1-preserving poset forcing “NSω1 is ω1-dense”.
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At last, some Inner Model Theory!

Proof.

• Work in the least inner model M with an inaccessible limit of

Woodin cardinals and a proper class of Woodin cardinals.

• Suppose MrG s |ù “NSω1 is ω1-dense” and ωM
1 “ ω

MrGs

1 .

• We show that in an extension of MrG s, there are divergent models

of AD (theorem then follows from gap in consistency strengths).

• In M, we have ♡ :

@α ă ω1Dx P R px codes α^ x P ODLpA,Rq for some A P uBq (♡)

• Why? Let β ă ω1 so that M}β Q x some code for α. For

Σ “ pω, ω1, ω1q-iteration strategy for M}β, have x P ODLpΣ,Rq.

• ♡ still holds in MrG s!
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At last, some Inner Model Theory!

Proof continued.

• Let g be MrG s-generic for PNSω1
– Colpω, ω1q.

• Generic embedding jg : MrG s Ñ N.

• By ♡ in N, let x code ωM
1 , x P ODLpA,RN

q, LpA,RNq |ù AD.

• Now, RN “ RMrGsrgs. If there are no divergent models in MrG srg s

then LpA,RNq is definable in MrG srg s from ΘLpA,RN
q.

• But then x is ODMrGsrgs, so x P MrG s by homogeneity of

Colpω, ω1q, contradiction!
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Thank you for listening!
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